Powered by Blogger.
Welcome to online portal for learning pure mathematics.

Vector Space (Theorem-5)

Statement:- The necessary & sufficient conditions for a non-empty subset W of a vector spaceV(F) to be a subspace of V are

( 1)  αW, βW α-βW
(2)  aF, αW aαW

Proof:-                Necessary Condition:-

Let V be a vector space over the field F and W be its subspace.
  W will be a vector space over the same field F.
Also,
          (W,+) is an abelian group.
   If   β  -βW
          αW, -β  α+(-β)W (By inverse axiom)
   ⇒  α-β∊W
Hence,
α∊W, β∊W  ⇒  α-βW , α,βW
Also,
          W will be closed under scalar multiplication.
   If aF, αW aαW , aF, αW
                   Sufficient Condition:-
Let W be a non-empty subset of a vector space V(F) satisfying the condition-
1- αW, βα-β∊W, ∀ α,β∊W
2- aF,  αW, aF, αW
∴     from(1)
          αW, β  α-βW
      αW, α  α-αW
i.e.   0W
    The zero vector of V also exists inW.
          0W, β  0-βW
           -βW
        β  -βW,  βW
Hence,  each element of W have their additive inverse.
            αW,  -βW
          α-(-β)W
            α+βW
W is closed under vector addition.
   from(2)
          aF, α  aαW, aF,  αW
i.e.  W is closed under scalar multiplication.
Since,

          All the elements of W are the elements of V. So associativity and community of vector addition are satisfied by elements of W.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 comments:

Post a Comment