Powered by Blogger.
Welcome to online portal for learning pure mathematics.

Linear Transformation Theorem-1

Statement:-

Let T be a linear transformation from avector space U into V over the field F.Then T is non-singular iff T is one-one.

Proof:-

Let T be a non-singular transformation from U into V.
Let α12U such that
                
T(α1)=T(α2)
            T(α1)-T(α2)=0
            T(α12)=0     ( T is linear transformation )
              α12=0       ( T is non-singular )
                 α12
     T(α)=T(α)    α=α
So T is one-one.
Conversally,
Let T be a one-one transformation.
Let αU such that T(α)=0
              αU,  T(α)=0
            T(α)=T(0)     [∵  T(0)=0]
                  α=0            [T is one-one ]
     αU  and  T(α)=0      α=0

So T is non-singular.                                                Proved

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 comments:

Post a Comment