Powered by Blogger.
Welcome to online portal for learning pure mathematics.

Vector Space Question-1

Question:- Express (1,2,3) as a linear combination of (1,1,1),(2,-1,1) and (1,-2,5) in V3(R).

Solution:- Let a1,a2,a3R such that
(1,2,3)=a1(1,1,1)+a2(2,-1,1)+a3(1,-2,5)……………………(a)
(1,2,3)=(a1,a1,a1)+(2a2,-a2,a2)+(a3,-2a3,5a3)
(1,2,3)=(a1+2a2+a3, a1-a2-2a3, a1+a2+5a3)
                           a1+2a2+a3=1 ……………………………(1)
                             a1+a2+a3=2  ……………………………..(2)
and                       a1+a2+5a3=3……………………………..(3)
Substracting equa(3) from (1)              
We get                  3a2+3a3=-1……………………………….(4)
Again, substracting equa(3) from (2)
We get                -2a2-7a3=-1
or                           2a2+7a3=1………………………………..(5)
Now, multiplying by 2 in (4) & 3 in (5) and then substracting
(5) from (4)
We get                      15a3=5
                                   a3=1/3
Putting ‘a3’ in (4)
We get                 3a2+3*1/3 =-1
                               a2=  -2/3
Putting a2 & a3 in equa(2)
We get                 a1=2-2/3  -2/3  
                          a1=2
Since from (a)
(1,2,3)=2(1,1,1)-2/3(2,-1,1)+1/3(1,-2,5)

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

2 comments:

Vinay Kumar Mishra said...
This comment has been removed by the author.
Anonymous said...

Thank you so much

Post a Comment