Powered by Blogger.
Welcome to online portal for learning pure mathematics.

Linear Transformation (Question-1)

Question:-

Show that the mapping T:V2(R)V3(R) defined by T(a,b)=(a+b, a-b, b) is a linear transformation from V2(R) into V3(R).
Find the range, rank, null space and null(T) of T.

Solution:- Given that

T:V2(R)V3(R)
Such that T(a,b)=(a+b,a-b,b)
Let a,bR and α=(a1,b1) & β=(a1,b2)
Then aα+bβ= a(a1,b1)+b(a2,b2)
 =(aa1,ab1)+(ba2,bb2)
=(aa1+ba2, ab1+bb2)
  T(aα+bβ)= T(aa+ba, ab+bb)
= (aa1+ba2+ab1+bb2, aa1+ba2-ab1-bb2, ab1+bb2)
=[a(a1+b1)+b(a2+b2), a(a1-b1)+b(a2-b2), ab1+bb2]
=a(a1+b1, a1-b1, b1)+b(a2+b2, a2-b2, b2)
=aT(α)+bT(β)
 T:V2(R)V3(R) is a linear transformation.
Since  T:V2(R)V3(R)
      The set {(1,0), (0,1)} is a standard basis of V2(R).
        T(1,0) = (1, 1, 0)
T(0,1) = (1, -1, 1)
The set {(1, 1, 0), (1, -1, 1)} span range of T.
Also if a, bR such that
a(1, 1, 0)+b(1, -1, 1)=0
                  (a, a, 0)+(b, -b, b)=0
                  (a+b, a-b, b)=(0, 0, 0)
or                  a+b=0
&                   a-b=0
&                       b=0
                     a=0, b=0
    The set {(1, 1, 0), (1, -1, 1)} is Linear transformation.
     The set {(1, 1, 0), (1,-1, 1)} will be a basis of range of T.
                      dimR(T)=2
                      Rank(T)=2
                     Rank(T)+Nullity(T)=dimV2(R)
                              2+nullity(T)=2
                                  nullity(T)=0

   Null space of T is only zero subspace of V2(R). 

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 comments:

Post a Comment