Powered by Blogger.
Welcome to online portal for learning pure mathematics.

Annihilator Question-1

Question:-Let W1 and W2 be subspaces of a finite dimensional vector space V.
(a)Prove that (W1+W2)o=W10W20
(b)Prove that (W1W2)0=W10+W20.

Solution:-
(a)                       First we shall prove that
            W1W2(W1+W2)0.

Let                     fW10W20.Then fW10, fW20.
Suppose α is any vector in W1+W2.Then
                α=α1+α2    where α1W1, α2W2
We have
                   f(α)=f(α1+α2)=f(α1)+f(α2)
         =0+0   [α1W1 & fW10 f(α1)=0 and similarly f(α2)=0]
          =0.
Thus                            f(α)=0  αW1+W2
                                      f(W1+W2)0.
                               W10W20(W1+W2)0.                 ………….(1)
Now we shall prove that
(W1+W2)0   W10W20.
We have   W1W1+W2.
                 (W1+W2)0W10                         …………..(2)
Similarly, W2W1+W2.
                 (W1+W2)0W20                        …………..(3)
From (2) & (3),we have
(W1+W2)0W10W20 ……(4)
From (1) & (4),we have
(W1+W2)0=W10W20

(b)   Let us use the result (a) for the vector space V’ in place of the vector space V. Thus replacing W1 and W2 byW20 in (a),we get
(W10+W20)=W100W200
                           (W10+W20)=W1W2    [W100=W1 etc.]
                           (W10+W20)00=(W1W2)0

                                 W10+W20=(W1+W2)0.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 comments:

Post a Comment